On differential independence of the Riemann zeta function and the Euler gamma function
نویسندگان
چکیده
منابع مشابه
On some expansions for the Euler Gamma function and the Riemann Zeta function
Abstract In the present paper we introduce some expansions, based on the falling factorials, for the Euler Gamma function and the Riemann Zeta function. In the proofs we use the Faá di Bruno formula, Bell polynomials, potential polynomials, Mittag-Leffler polynomials, derivative polynomials and special numbers (Eulerian numbers and Stirling numbers of both kinds). We investigate the rate of con...
متن کاملDifference independence of the Riemann zeta function
It is proved that the Riemann zeta function does not satisfy any nontrivial algebraic difference equation whose coefficients are meromor-phic functions φ with Nevanlinna characteristic satisfying T (r, φ) = o(r) as r → ∞.
متن کاملA Hybrid Euler-hadamard Product for the Riemann Zeta Function
We use a smoothed version of the explicit formula to find an accurate pointwise approximation to the Riemann zeta function as a product over its nontrivial zeros multiplied by a product over the primes. We model the first product by characteristic polynomials of random matrices. This provides a statistical model of the zeta function which involves the primes in a natural way. We then employ the...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2008
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa135-4-2